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LETTER TO THE EDITOR 

Universality along the critical line of the Ising 
cellular automata 
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Physics Department, St Francis Xavier University, Antigonish, Nova Scotia, B2G 1CO 
Canada 

Received 29 June 1990 

Abstract. We check the hypothesis of universality along the critical line of the Ising cellular 
automata ( ICA) by measuring critical exponents of damage propagation at the transition 
temperature TL in zero field and at higher temperatures in non-zero field and at the 
Kauffman limit ( T  = a). Numerical results support the claim of universality. 

The recent formulation of cellular automata equivalent to the Ising model has shown 
some interesting effects of the introduction of determinism to a thermodynamic system 
[ 1,2]. The Ising cellular automata, or ICA, are spin-b automata of the Ising model. In 
contrast to the Ising model where the response of a site in the system to its local 
configuration may be different each time that configuration is encountered, in ICA a 
site’s response to a particular local configuration is always the same. The lsing cellular 
automata evolve according to a set of rules: these rules govern the system’s response 
to any and all possible configurations of neighbouring sites. In particular these rules 
store whether a site will assume the +1 state or the -1 state in response to a local 
configuration of neighbouring sites. 

Of the utmost importance in ICA is the Boltzmann probability, given by: 

exp(-E(+l) /kT) 
exp(-E(+l)/  k T )  + exp( - E (  -l)/ kT) 

P(S1)  = 

E (ai) - 1 J u ~ u ~  +  HIT^ (2) 

where 0;. = *l is the state of site i, J is the coupling constant between neighbour sites 
i and j and H is the applied field. The rules determine the subsequent state of a site 
according to the Boitzmann probability, P(+l), of the site being +l. At the beginning 
of a simulation, for each site and for each possible local configuration around that 
site, a random number is compared to the approprihte Boltzmann probability for that 
configuration and if this random number is less than P(+1) then the rule will be that 
the site assumes the $1 state, otherwise the rule will be that the site assumes the -1 
state. The rule is now fixed for that site and for that particular configuration. To make 
the distinction between an equilibrium Ising model and ICA clearer, we outline the 
steps in updating a single site. In the Ising model one would note the local configuration 
of neighbours, calculate P(+1) and generate a random number. If that random number 
were less than P(+1) then the site would assume the +1 state, alternatively if the 
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random number were greater than P(+1) then the site would be set as -1. The next 
time that site was updated a new random number would be used in the process. In 
an ICA one would note the state of the neighbours and their local arrangement. This 
arrangement uniquely determines the subsequent state of the target binary variable 
(*1) because the rules, created before any updating had started, already contain the 
response to that arrangement of neighbours. The next time we update this site we will 
use the same rules, hence if the local configuration is the same, then the response will 
be the same. 

As a basis for discussion we limit ourselves to simultations and results from the 
square lattice. In this 2~ nearest-neighbour version of I C A  a site has 16 rules. We stress 
that these rules are created before a simulation begins, and no further random numbers 
are used thereafter. Given the rules that each site will follow and each site’s initial 
state, the subsequent behaviour of the entire system is determined. The ICA is therefore 
a deterministic, but non-reversible system. 

The ICA incorporate a widely known cellular automata, the Kauffman model, as a 
limiting case. The Kauffman model can be referred to as ICA at high temperature with 
a field, where the field is related to the probability, p ,  of the Kauffman model by: 

(3) 

We define h = H /  kT, which we will refer to as the reduced field, and work with this 
quantity instead of H. One will notice that the ICA offer a fundamental and meaningful 
method of including temperature in the Kauffman model [3]. 

Perhaps the most striking and intriguing property of the ICA in ZD may be found 
in comparison of damage propagation of the I C A  with that of the equilibrium Ising 
model subject to heat-bath dynamics. Damage may be viewed as the deviation or 
Hamming distance of two initially identical systems (same rules, same initial configur- 
ation) after a small perturbation to one system. During the temporal evolution of the 
systems, if coinciding sites in the two systems have different states, then we refer to 
the site as damaged. The collection of damaged sites is known as the damage cloud. 
When a small initial defect causes the damage to propagate to the edge of a system 
of any size, we say the system is in the chaotic phase. When this initial damage remains 
localized we refer to the system as being in a frozen phase. In our simulations of the 
ICA, the initial damage is a distinct set of rules governing the evolution of a row of 
spins at the centre of the second system which are different from those in the first 
system. The rules governing the behaviour of the other sites are identical for both 
systems. This method of introducing initial damage has been shown to be equivalent 
to flipping the centre line of spins in a second system, this second system being an 
exact replica of the first [4]. 

Figure 1 shows the global dynamic phase diagram of both systems; the 2~ Ising 
model and 2~ ICA. The traditional Ising model has a singularity at T = T, = 2 / l n ( d +  l) ,  
h = 0, at which the damage will propagate to the edge of an infinite system [ 5 ] .  The 
ICA has a phase separation, with a line of critical points. Above this line is the frozen 
regime and below is the chaotic regime. Much of the interest lies along the boundary 
between these two regimes. Does the system evolve as in the well studied limiting case, 
the Kauffman model, along the entire critical line, or do the critical properties of the 
system vary continuously along this line? Some recent work [ 6 ] ,  along with the work 
presented here support the former proposition; namely that the exponents are constant 
along the critical surface. 
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Figure 1. ( a )  Dynamic global phase diagram for k ing  model. Note the singularity at Tc, 
at which damage will propagate to the edge of an infinite system. T,== 2.269. ( b )  Dynamic 
global phase diagram for ICA. Note the critical line between the frozen (damage localized) 
and the chaotic (damage propagates to edge of infinite system) phases. When h = 0, the 
critical temperature is Tk = 5.6.  

One may describe the spread of damage through the system using the critical 
exponents d,,, and d, ,  introduced by Stauffer for the Kauffman model [7]: 

(4) (m) - LLt 

( t )  - Ld' ( 5 )  

where M is the mass or number of damaged sites in the damage cloud when the 
damage reaches the edge of the system and t is the time for the damage to touch the 
edge. The critical exponents for the ICA in zero field at T = Tk = 5.6 were quoted by 
Jan as 1.8 < d,,, < 1.9 and d, -- 1.3 [6]. These values are in agreement with those found 
for the Kauffman model or I C A  at T = a3 and h = h k (  T )  ( h k (  T )  is the critical reduced 
field at temperature T ) ,  clarified recently by Stauffer [8]. Jan proposed that these 
exponents are the same all along the critical line, implying that these ICA are members 
of the same universality class. Results of the work presented here agree with this 
conjecture. 

Simulations were done to find the critical reduced field, hk(T),  at suitable tem- 
peratures, where h k (  T )  is the reduced field necessary to prevent damage spreading to 
the edge of an infinite system in at least 50% of the simulations at temperature T. We 
determine h k  in a manner similar to that of Stauffer [8] in his odyssey to find p c  for 
the Kauffman model. The variation of h k  with 1/L was plotted, and the asymptotic 
value as L tends to infinity was noted. At T = 8.0, the reduced critical field hk is 0.24. 
While at T = 20.0, a very high temperature, hk is 0.39. The reduced critical field found 
at T = CO (from the most reliable estimate of p c  Kauffman) is h k  = 0.4236. The critical 
exponents, defined in equations 4 and 5, may be found by graphing log( M )  and log( t )  
against the log(L). The critical exponents for T = Tk = 5.6, T = 8.0 and T = 20.0 are 
found from figure 2. Table 1 lists the numerical values of these exponents along with 
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Figure 2. Critical exponents: log((M)) and log((t)) against log(L). Where M is the damage 
at time t, when the damage reaches the edge of a system of size L. The slopes of the lines 
will yield the critical exponents d,,, and d ,  as the scaling relations are (M) - Ldaci and 
( t ) - L L d l .  ( a )  T = T k = 5 . 6 ,  d,,,=1.81*0.05, d,=1.31*0.05; ( b )  T=8.0, d,,,=1.85*0.05, 
d,=1.34*0.05; ( c )  T=20.0, da,,=1.84*0.0S, d,=1.36+0.05. + = d a m a g e , A = t i m e .  

Table 1, 

ICA 

t = w  king  
T =  rk =5.6 T = ~ . o  T = 20.0 Kauffman [8] model [9] 

d,,, 1.81 k0.05 1.85 * 0.05 1.84*0.05 1.8510.05 1.72k0.03 
d, 1.31 *0.05 1.34 * 0.05 1.36*0.05 1.35 * 0.05 2.24 * 0.04 
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those for the Kauffman model or ICA at T = m ,  and the equilibrium Ising model. 
Comparison of these values shows that along the critical surface of the ICA, the critical 
exponents are numerically indistinguishable within the quoted error bars. 

To summarize we have explored the dynamics of the newly formulated ICA along 
the critical surface. We have found that numerical results support the hypothesis of 
universality along this critical line: the relevant exponents d,,, = 1.85 lir. 0.5 and d, = 
1.3 * 0.5 are within quoted errors, constant along the critical line. Further these results 
combined with results of work on the king model [9] show that the ICA lie in a distinct 
universality class from the equilibrium Ising model. 
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